贪心算法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变。换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优。贪心算法对于大部分的优化问题都能产生最优解,但不能总获得整体最优解,通常可以获得近似最优解。
一个小孩买了价值少于1美元的糖,并将1美元的钱交给售货员。售货员希望用数目最少的硬币找给小孩。假设提供了数目不限的面值为2 5美分、1 0美分、5美分、及1美分的硬币。售货员分步骤组成要找的零钱数,每次加入一个硬币。选择硬币时所采用的贪婪准则如下:每一次选择应使零钱数尽量增大。为保证解法的可行性(即:所给的零钱等于要找的零钱数),所选择的硬币不应使零钱总数超过最终所需的数目
为使找回的零钱的硬币数最小,不考虑找零钱的所有各种方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,只当不足大面值币种的金额才会去考虑下一种较小面值的币种。这就是在采用贪婪法。这种方法在这里之所以总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如果只有面值分别为1,5和11单位的硬币,而希望找回总额为15单位的硬币,按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解答应是3个5单位面值的硬币。
用贪心法求解问题应该考虑如下几个方面:
1 | Greedy(C) //C是问题的输入集合即候选集合 |
对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢?这个问题很难给予肯定的回答。
但是,从许多可以用贪心算法求解的问题中看到这类问题一般具有2个重要的性质:贪心选择性质和最优子结构性质。
子问题:假设为了解决某一优化问题,需要依次作出 n 个决策 D1,D2,…,Dn,对于任何一个整数k,1 < k < n,以 Dk 作为问题的初始状态,来进行以后的决策,这样的问题就成为是原问题的一个子问题。
所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,换句话说,当考虑做何种选择的时候,我们只考虑对当前问题最佳的选择而不考虑子问题的结果。这是贪心算法可行的第一个基本要素。
贪心算法以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。
对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用贪心算法求解的关键特征。